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Abstract--A general classification of two-phase flows and a number of possible ways to formulate 
two-fluid models are discussed. The two-fluid model is adopted, and a general procedure to develop such 
a model is presented. The local instantaneous equations of mass and momentum are derived together with 
the corresponding jump conditions. Volume, time and ensemble averaging procedures are discussed, and 
averaged equations and jump conditions are derived using a general averaging operator. A Reynolds 
decomposition and weighting procedure is applied to obtain the final equations. The equations necessary 
to close the system, so-called closure laws, are discussed. The mechanisms contributing to the viscosity 
of both phases and mixture viscosity models are presented. The particle pressure is discussed, and some 
simple models based on the modulus of elasticity concept are given. The interfacial momentum transfer 
term is discussed in detail, and a study of common models of the drag function is presented. A discussion 
of turbulence models for the gas and particulate phases is included. A summary and critical assessment 
of published work on simulations of hydrodynamics in bubbling and circulating fluidized beds are also 
presented. © 1997 Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

1.1. Background 

Two-phase flows are important in most industrial applications, examples being energy 
conversion, paper manufacturing, food manufacturing and medical applications. It is of great 
interest for the development of these applications to achieve a basic understanding of the complex 
flow situations that arise. Vast numbers of experiments have been carried out for different 
applications, a strategy that produces specific but expensive results. With modern computer 
technology, however, it is possible to numerically solve the partial differential equations describing 
multidimensional, time-dependent two-phase flow problems. It is thus interesting to develop the 
theoretical background to a higher level. Empirical models are needed to close the set of equations 
and, consequently, successful modelling is strongly dependent on experimental data. 

Two-phase flow problems can be modelled in several ways. In some applications, e.g. film boiling 
(separated flow), the two phases can be modelled with the established equations for single-phase 
flows with a moving boundary between the phases. In practice, however, many flows are well mixed 
and, for such cases, this method cannot be used. In applications with well mixed phases, e.g. when 
the number of particles or droplets in the dispersed phase is large, averaging procedures are 
necessary to make the equations solvable. The most important averaging procedures are space 
average, time average and ensemble average. 

T h e  f o l l o w i n g  s o u r c e s  a re  c o m p r e h e n s i v e  p u b l i c a t i o n s  o n  t he  d e r i v a t i o n  o f  ba s i c  t w o - p h a s e  f low 

e q u a t i o n s  a n d  d i f f e r en t  a v e r a g i n g  p r o c e d u r e s :  I sh i i  (1975) ,  D e l h a y e  a n d  A c h a r d  (1977) ,  B o u r 6  a n d  

D e l h a y e  (1982) ,  S o o  (1990) ,  D r e w  a n d  L a h e y  (1993)  a n d  H e  a n d  S i m o n i n  (1994) .  T h e s e  r e f e r e n c e s  

a r e  r e c o m m e n d e d  as  a c o m p l e m e n t  to  t he  p r e s e n t  p u b l i c a t i o n .  

tAuthor  to whom correspondence should be addressed. 
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1.2. Scope of this stud)' 

The purpose of this study is to provide insight for newcomers in the field of simulation of 
two-phase flows in fluidized beds. An attempt has been made to gather important models and 
findings from a wide range of different publications to give a rapid introduction to the available 
approaches to this physically and mathematically complex field. 

This report describes the two-fluid model, derived with a general averaging procedure. The 
derivation of the local instantaneous mass and momentum equations is described in section 2. The 
methods of ensemble, time and space averaging are discussed briefly and these methods are applied 
to the local instantaneous equations in section 3 and appendix B. The closure laws, i.e. topological, 
constitutive and transfer laws, are discussed in detail in section 4. The models described in sections 
2-4 will be referred to as traditional models. Section 5 describes a two-fluid model including 
turbulence of both phases. Section 6 presents a summary of work done by different research groups 
on the simulation of bubbling and circulating fluidized beds and gives a critical assessment of the 
methods used. 

1.3. Classification of two-phase fows 

The variety of possible two-phase flow problems is illustrated by the different classification 
methods suggested in the literature. A general classification is that of Ishii (1975), who divides 
two-phase flows into four groups depending on the constituents of the flow: gas-solid flows, 
gas-liquid flows, solid-liquid flows and flows of two immiscible liquids. 

Ishii also makes a different classification depending on the topology of the flow, cf. table 1, which 
distinguishes between the three classes: separated flows, mixed flows and dispersed flows. Dispersed 
flows are studied in the present report. This class is in turn subdivided in terms of typical regimes, 
as shown in the table. Of these regimes, the present study treats the particulate flow. However, there 
are many different ways to characterize particulate flows as well. A classification by Kunii and 
Levenspiel (1991) based on the fluidization velocity and particle properties is shown in figure 1 for 
the specific field of ftuidization. A number of other classifications for different types of two-phase 
flows can be found in the literature, e.g. Hewitt (1982). 

1.4. Classification of two-phase flow models 

There are many ways to model a two-phase flow problem using partial differential equations 
(PDEs), depending on the physical phenomena of interest and the nature of the problem. In this 
report, interest is focused on Eulerian three-dimensional models. Ishii (1975) divides these into the 
two categories of diffusion models and two-fluid models. A diffusion model is formulated by 
considering the mixture as a whole, and can be represented by one continuity equation, one 
momentum equation in each coordinate direction, one energy equation and one diffusion equation, 
to take into account the effect of concentration gradients. A two-fluid model, which is the model 
under consideration in the present work, consists of two continuity equations, two momentum 
equations in each coordinate direction and two energy equations. Additional closure laws are 
needed to close the set of equations, as described below. 

1.5. Formulation of a two-fluid model 

There are many ways, depending on the averaging procedure and the closure laws adopted, to 
formulate a two-fluid model. The general idea is to first formulate the integral balances for mass, 
momentum and energy for a fixed control volume containing both phases. This balance must be 
satisfied at any time and at any point in space, and thus reduces into two types of  local equations, 
one being the local instantaneous equations for each phase and the other an expression of the local 
instantaneous jump conditions, i.e. the interactions between the phases at the interface. In principle, 
this set of  equations could be solved by direct simulation, i.e. using a numerical mesh finer than 
the smallest length scales of the flow and a time step shorter than the time scales of  the fastest 
fluctuations. This would require quite unrealistic computational times, however. 

An alternative method would be to apply a Lagrangian approach for the particulate phase, 
although this would result in too large a number of equations for cases with many particles, i.e. 
for most practical applications. Recent attempts to use Lagrangian models are the work by 
Hoomans et al. (1996) who simulated a single rising bubble in a two-dimensional bubbling fluidized 
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bed, and Yonemura et al. (1995) who studied numerically the effects of the physical properties of 
the particles on the structure of particle clusters in circulating fluidized beds. 

For  the Eulerian approach, discussed in the present paper, the local instantaneous equations 
must be averaged in a suitable way, either in space, in time or as an ensemble. This allows a coarser 
mesh and a longer time step to be used in the numerical simulation, but, alas, introduces more 
unknowns than the number  of equations into the system, and thus necessitates the inclusion of 
additional expressions to close the set of equations. 

The closure laws are of three types: topological, constitutive and transfer laws, where the first 
type describes the spatial distribution of phase-specific quantities, the second type describes physical 
properties of the phases and the third type describes different interactions between the phases. As 
most of these expressions are empirical, experimental data are needed in order to develop and verify 
the laws. A general procedure for developing a two-fluid model is shown in figure 2. In the 

Table 1. Different regimes for two-phase flows according to Ishii (1975) 
Typical 

Class regimes Geometry Configuration Examples 

Separated Film f low ~ Liquid film in gas Film cooling 
flows ,- , , ,- ,- Gas film in liquid Film boiling 

Mixed or Slug or 
transitional plug flow 
flows 

Dispersed Bubbly flow 
fows 

Annular t/ /f Liqui coreand as lm Fimboiling 
flow Gas core and liquid f i l m  Condensors 

Jet flow ~ / Liquid jet in gas 
/ Gas jet in liquid 

Bubbly t ;  II Gas bubbles in liquid 
annular flow Film with gas core 

Droplet t l!i:'i ill f Gas core with droplets annular flow and liquid film ." 

Bubbly l!}:'} iIf Gas core with droplets 
droplet and liquid film with gas 
annular flow '" bubbles 

°° f 
O 0  

0 Gas bubbles in liquid 

Droplet flow til [i:i i!f ." Liquid droplets in gas 

flow Particulate Ill/~'i i!f ." liquid Solid particles in gas or 

Atomization 
Jet condensor 

Sodium boiling in 
forced convection 

Evaporators with 
wall nucleation 

Steam generator 

Boiling nuclear 
reactor channel 

Chemical reactors 

Spray cooling 

Transportation of 
wheat 
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pneumatic transport I 
L 

fast fluidization I 
_ +  

turbulent-churning 

::0\ 
, ii 

~ ~  ~ Geldart 
classification 

fixed bed I 

increasing gas 
velocity 

Figure I. Gas solid flow classification according to Kunii and Levenspiel (1991). based on the Geldart 
(1973) particle classification. 

following, the averaging procedures are discussed in a general way, while the closure laws are 
discussed only for gas-particle flows. 

2. LOCAL INSTANTANEOUS EQUATIONS 

2.1. General equations 

Several references can be found in which the local instantaneous equations are derived for both 
phases. The method used to derive the equations in this chapter was presented by Delhaye (1981) 
and by Bour6 and Delhaye (1982). 

Consider a general volume fixed in space (cf. figure 3) and shared by two phases with phase index 
k. The interface with the area between the phases Al(t) is moving with the velocity u~. When a vector 
or scalar variable ffk belonging to phase k is to be transported through the control volume using a 
coordinate system which is fixed (Eulerian approach), the following integral balance can be written 

pk~k dV = ~b, d A +  ~ - p~kk(u~'nk)dA+ pkqSk d V - -  Jk'nk dA . [1] 
k = 1 J V k ( t )  i(t) k = 1 k ( t )  ( t )  J A k ( t  ) 

Gauss' and Leibniz's 
theorems 

averaging procedure 

closure equations 

boundary and initial 
conditions 

integral balances of mass, 1 
momentum and energy 

local instantaneous eqs 
and jump conditions J II 

STEP1 

I averaged equations 

61 -+ 
closed set of PDEs 

STEP 2 

STEP3 

STEP 4 

two-fluid model ] 

Figure 2. General procedure for formulating a two-fluid model. 
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phase k=1 : V 1 (t), A I (t) 
phase k--2 : V 2 (t), A 2 (t) . /  

Figure 3. Fixed control volume containing two phases with a moving interface. 

In this notation, nk is the outwardly directed normal unit vector to the interface of the volume 
occupied by phase k, d/dt is the ordinary time derivative, Uk is the velocity of  phase k, pk is the 
density, ~b~ is the conserved quantity, Jk is the molecular flux, ~bk is the source term and ~Pl is the 
interfacial source term. In [1], surface tension is not included in the formulation because these 
effects are negligible in gas-particle flows (the term involving surface tension would appear as a 
line integral over a curve which is the intersection of the fixed control volume and A~(t)). A more 
complete formulation involving surface tension effects can be found in Delhaye (1974). 

To continue the derivation, the velocity of a point on a geometric surface in space must be 
defined. Consider a surface defined by r = r(x(~, r/, t), y(~, q, t), z(~, q, t)). The velocity of the 
surface point, (~, q), is defined by 

u, = ~ ~,~ . . . . . .  " [ 2 ]  

The left-hand side of  [1] can be transformed using Leibniz's theorem, [A4] in appendix A, into a 
volume integral and a surface integral which considers the movement of the interface. Furthermore, 
the convective term (the second term on the right-hand side) and the diffusion term (the last term 
on the right-hand side) can be rewritten as the sum of  a volume and a surface integral using Gauss' 
theorem, [A1]-[A3] in appendix A. Thus, 

dfv,. Pk~/kdV=fv ~/(pk'k)dV+~ Pk~u"nkdA'dt (,7 (,, ,(,, [3] 

fv V'(pk~kUk)dV=~ pk~bkuk'n,.dA+~ pk~bkU~.'nkdA 
k(t) A(t) -/At(t) 

[4] 

and 

fVk<'~ V'Jk d V= f~k(,) Jk'nk dA + fA ,(') Jk'nkdA. [5] 

The surface integral over A~.(t) in [3] vanishes because the speed of displacement of  the boundary 
is zero as a consequence of the control volume being fixed. 

Equation [1] can now be rewritten as one volume integral for the volumes occupied by the two 
phases and one surface integral which expresses the jump conditions across the interface 

(pkg.]k) "-~ V'(pk~kUk)'Jf-V'Jk--pk(fik dV- -  (l~lk~lk + Jk'n~.)+~b, dA = 0. [6] 
k ~ I . ( t )  / J A l ( t ) \ k  = 1 

In the second integral of the above equation, mk is the mass transfer per unit area of interface and 
unit time, defined as 

rn,. = pk(Uk -- U,)'nk. [7] 
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Table 2. Values of ~0~, &, ~kk and ¢1 for the balance 
equations and jump conditions 

Balance O~ & 4~ qS, 
Mass 1 0 0 0 
Momentum U~ - ~ b 0 
Energy EA qk -- ~" U~ b. U~ 0 
Entropy Sk q~ /0~ A~ /p~ & 

Equation [6] must be satisfied for any Vk(t) and &(t). Thus, the local instantaneous equation is 

(pk~bk) + V'(pk~bkUk)+ V'Jk--Pk(~k = 0 [8] 

and the local instantaneous jump condition is 

2 

(rhkqJ, + Jk'nk)= --4>~- [91 
k = l  

The local instantaneous equation and the corresponding jump condition can be applied to the 
transport of mass, momentum, energy, entropy, chemical species and so on. 

2.2. Primary equations and jump conditions 

2.2.1. Introduction.The local instantaneous equations and the corresponding jump conditions 
for mass, momentum, energy and entropy are defined by table 2 and [8] and [9]. These sets of 
equations are called the primary equations and primary jump conditions, respectively. 
Secondary equations and secondary jump conditions, e.g. for the mechanical energy, can be derived 
from these equations if needed. 

2.2.2. Conservation of mass. 

8 
(pk) + V'(pkuk)=0, [10] 

2 

mk = 0. [11] 
k = l  

2.2.3. Conservation of momentum. 

8 
~t (pkUk) + V'(pkukuk)--V" ~k--pkb = O, [12] 

2 

Y' (rkkuk- ~k'nk)=O, [13] 
k = l  

where Tk is the stress tensor and b is the body force (gravity). 

3. GENERAL AVERAGING TECHNIQUE 

3.1. Averaging principles 

Modelling two-phase flows is a difficult task, both from a mathematical and a physical point 
of  view. The mathematical difficulty lies in the formulation of the two-phase flow as two single 
phases with moving boundaries, while the physical difficulty lies in the modelling of  the interaction 
between the phases at the interface. If the number of particles suspended in a gas flow is large, 
an averaging operator acting on the local instantaneous equations is needed (the alternative would 
be to solve one ordinary differential equation for each particle using a Lagrangian approach). 

This section discusses the averaging methods of the local instantaneous equations and jump 
conditions. The use of averaging procedures in the two-phase flow theory has been extensively 
discussed in the literature. This chapter is based mainly on Ishii's book (1975), the publications 
of Delhaye and Achard (1977, 1978) and a publication by Delhaye (1981). 
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In the Eulerian approach, a given parameter, which can be a scalar, vector or tensor, is defined 
by the following equation: f = f ( r ,  t). The parameter is thus studied at a fixed point in space, r, 
at any time, t. At this point and time, either one of  the phases may be present. To simplify the 
description, some kind of  average is applied to the balance equations. The volume average is 
performed around the fixed point r at the time t, whereas the time average is performed at the 
point r over a time interval including the time t. The ensemble average is to be viewed as the 
statistical average of  the parameterfn at the point r and time t over a large number of  experiments 
with the same initial and boundary conditions. 

The volume average is defined as 

lfv ( . . . ) v  = ~ ( . . . ) dx  dy dz. [14] 

Whitaker (1969) gives the conditions under which the volume averaging procedure can be applied: 

(characteristic dimension of  phases) 

<<(characteristic dimension of averaging volume) 

<< (characteristic dimension of physical system). 

The time averaging operator is defined by 

1 ("  + r/2 
= J, ( . . ) d r .  [16] 

( ' " ) '  T -T,,2 " 

According to Delhaye and Achard (1977, 1978), the time interval chosen for the averaging must 
satisfy the following conditions: 

(time scale of  the turbulent fluctuations) 

<< (time interval for averaging) 

<< (time scale of the mean flow fluctuations). 

For  flows for which it is not possible to distinguish between the time scales of  the turbulent 
fluctuations and the time scale of the mean flow, Delhaye and Achard (1977, 1978) introduce a 
double time-averaging operator. 

The ensemble average, defined by 

( . . . )~  = f ( . . . ) d P ( p ) ,  [18] 

is the most general averaging process. In [18], dP(p)  is the probability of  observing process p and 
E is the set of  all possible realizations, cf. Drew and Lahey (1993). A practical example of the 
meaning of the ensemble average is the averaging of a set of experiments in a fluidized bed starting 
with the same initial distribution of particles and the same initial gas and particle velocity 
distribution. There is thus no need to know the exact location of each particle nor the exact velocity 
fields in the beginning. In other words, the ensemble average is the statistical mean value of any 
parameter of  interest at a given position and time over a number of experiments. 

Both the time and spatial averages can be viewed as approximations of  the ensemble average, 
which are valid provided the small and large time or space scales can be separated as described 
above. This is an application on a local scale of the ergodicity hypothesis, which states that if a 
flow is stationary and homogeneous, the ensemble, time and volume averages are equivalent. 

The averaging procedure leads to a model describing two interpenetrating, continuous media. 
The averaging of  the particulate phase is, on a larger scale, analogous to the averaging performed 
in the kinetic gas theory, when the averaging of the molecular motion leads to the description of 
the gas phase as a continuum, see also section 5.5. The single-phase equations of  motion for a gas 
or liquid are regarded as local instantaneous equations, valid in a 'point'  in space and time. A 
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'point' in this connection implies a space and time scale large enough to avoid the microscopic 
uncertainties in molecular motion but small enough to avoid macroscopic variations in the flow 
field. In analogy with this, the averaging of the particle motion in a disperse two-phase flow leads 
to averaged equations of motion for the continuous particulate phase, which in the same sense can 
be regarded as 'local instantaneous' equations, albeit on a larger scale. 

The physical interpretation of the average, as a time, volume or ensemble average, may be 
important when formulating appropriate closure laws. However, the distinction between the 
different averages is not always obvious. For a fluidized bed, the three different types of averages 
may well be identical, provided the criteria above are fulfilled. For a fixed bed, however, where 
the particles do not move, a time average of the particle concentration at a given point in the bed 
will either give the value zero or one, cf. [19] and [20], while a volume average over a volume dV 
fulfilling the criteria above will give an appropriate value. 

3.2. Derivation of the general averaged equations 
The averaging methods presented above will be applied in the present section to transform the 

local instantaneous equations and jump conditions into averaged balance equations and 
corresponding averaged jump conditions. In so doing, the method presented by Drew (1983) is 
used. 

As shown in [14], [15] and [18], the averaging operators for the volume, time and ensemble 
averages are formally similar. Thus, in the following, the general averaging operator ( . . . )  denotes 
any of the specific operators defined above. 

A few basic relations are first introduced. The phase indicator function, X~., for phase k is a step 
function defined in the following way 

1, if r e k 
Xk(r, t) = 0, otherwise. [19] 

The average (ensemble, volume or time) of the phase indicator function is equivalent to the average 
occurrence of phase k 

~ = (X~), [20] 

where 

2 

et, = 1. [21] 
k I 

In the following, the average occurrence of the gas phase, a~, is referred to as the voidage. 
The averaging procedure is assumed to have the following properties 

( f +  g )  = ( f )  + (g ) ,  [22] 

( ( f ) g )  = ( f ) ( g ) ,  [23] 

(constant)  = constant, [24] 

I O f )  ~ ( f )  [25] 
- at ' 

( V f )  = V ( f ) ,  [26] 

( V . f )  = V . ( f ) .  [27] 

Using the definition of the phase indicator, [19], together with [22]-[27] and the chain rule, the 
following relations can be derived 

__ E28, 
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v < x & >  = <xkv~ > + <~vx~>,  

v. <x~A > = <xk v .~  > + <A-vxk >. 

Another fundamental relation is the following, which was derived by Drew (1983) 

c~t + u~. VXk = 0. 

[29] 

[301 

[31] 

According to Drew and Lahey (1993), [31] can be interpreted as the material derivative of  the phase 
indicator following the interface. 

The first step in the averaging procedure is to multiply the local instantaneous equation, [8], by 
the phase indicator function and form the average of the resulting equation. With the aid of 
[28]-[31], the general form of the averaged balance equation is then obtained as 

c~t <Xkpk~. > + V'< Xkpk~kuk > + V'<XkJk >--<Xkp~.¢k> 

. ~xk\  
= (mkOk + J~'nk) --~n-n ; [32] 

The right-hand side of  the equation is the interfacial transport term. The gradient of the phase 
indicator function is expressed as VX~. = (~Xk/~n)nk, where 

0~ - 6k. [331 

Here, 6~, is the Dirac's delta function associated with phase k. Thus, the gradient serves to sort 
out the mass and molecular fluxes at the interface. The Dirac delta function has the property 

f ~ f (  ~)6( ~ - a)d~ = J(a) [34] 

and, thus, averaging the product of the absolute value of the gradient and the fluxes gives as the 
result the average contributory effect of the mass and molecular fluxes at the interfaces over the 
whole domain of integration. 

The gradient of the phase indicator function is also used when transforming the local 
instantaneous jump condition [9], into an averaged jump condition 

E ,I 

In the following sections, the averaged balance equations for mass and momentum are presented 
together with the corresponding averaged jump conditions. 

3.3. Averaged transport of mass and momentum 
The specific balance equations of mass and momentum and the corresponding jump conditions 

are given by the general averaged balance equation [32], the general averaged jump condition, [35], 
and table 2. For  a case in which there is no mass transfer between the phases, i.e. in which mk = 0, 
the following equations are obtained. Averaged continuity equation 

0 
~-~ {X~pk> + V'{Xkpkuk) =0.  [361 

With no mass transfer between the phases, the mass jump condition vanishes. 
Averaged momentum equation with the body force equal to the gravitational acceleration 

<X~p~u~ > + V'<Xkp~ukuk >-- V'<Xk Tk >--<Xkpkg> 8t 

= < - Tk-VXk > = Mk,, [37] 

where Mkl is the interfacial momentum transfer. 

IJMF 221Suppl B 
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Averaged momentum jump condition 

2 2 

2 ( -'~I''VXA >= 2 Mkl = 0 ~ M,, = -M: I .  [381 
k = ]  k - [  

All the terms on the left-hand side of the balance equations represent self-interacting quantities, 
while the terms remaining on the right-hand side are interfacial transfer terms, i.e. they represent 
interactions between the phases. As described in section 4.4 below, the transfer terms are modelled 
using empirical expressions, and the jump conditions place constraints on these. 

3.4. Reynolds-decomposed and weighted averaged equations 

3.4.1. Reynolds decomposition. The averaged equations presented above cannot be solved 
directly, as they contain averages of products of the dependent variables. To obtain a solvable set 
of equations, they must first be rewritten into expressions containing products of the averaged 
variables. This is done by employing the Reynolds decomposition and a weighting procedure to 
the variables before averaging, as demonstrated by Drew and Lahey (1993) for an 
ensemble-averaged two-fluid model and by Ishii (1975) for a time-averaged two-fluid model. 
Reynolds decomposition and time averaging are normally used in the field of single-phase 
turbulence modelling in order to separate the fluctuating components of the variables from the 
time-averaged variables, but, here, the main purpose of the decomposition and weighting is to 
separate the averages of products into products of averages. The phrase 'Reynolds decomposition' 
is used, stricto sensu, in connection with time averaging, but this terminology is used in the present 
case regardless of the type of averaging procedure employed. The procedure will result in extra 
terms in the equations, containing correlations of the fluctuating components. These extra terms 
are analogous to the Reynolds stress terms in the case of single-phase turbulence modelling. 

Applying the Reynolds decomposition and the weighting procedure to a general variable, f ,  the 
following expression is obtained 

f= (f)w + f , ,  [39] 

where the first term on the right-hand side is a weighted mean value and the primed term is the 
deviation from this mean value. The weighting procedure is described in section 3.4.2. 

3.4.2. Weighted averaged variables. Generally, the weighted mean value of a given scalar or 
vector or a tensor f is defined by 

( f ) w  = ( WI ) ! ( W ) ,  [40] 

where W is an arbitrary weighting factor. However, before further discussing weighted mean values, 
some theorems and definitions must be given. 

The weighted mean value should have all properties given by [22]-[27]. To separate the average 
of products into products of averages, two different weighting procedures are used. The variables 
are either weighted with the phase indicator function (phasic average) or with the phase indicator 
function times the density (mass-weighted average or Favre average) 

(,/.)x~ = ( X J ) / ( X ~ )  [411 

or 

U" )x:,,~ = (X~.pkf )/(X~p: ). [42] 

The reason for introducing the mass-weighted average is to be able to split up the correlations 
between the fluctuating density and the other fluctuating variables. For convenience, the weighted 
variables and terms are summarized below. 

The velocities are taken as mass-weighted averages: {uk )x~,k and (u ; )  x~'k, where in the following, 
the notation (u,)x~p~ = Uk will be used. Note also that the average of the fluctuating velocity equals 
zero, (u~) x*~* = O. 

The density of phase k is weighted using the phasic average 

(pk ) x~ = (Xkpk ) /(Xk ) = (Xkpk )/O~k = p~. [43] 
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The stress tensor of phase k is weighted using the phasic average 

<T~> ~'~ = T[, .  [44] 

The averages presented above are all averages of single variables. In contrast to this, the fluctuation 
stress tensor of phase k is the phasic average of products of  the fluctuating velocity components, 
defined as 

?~° = - <X, pk u~ u~ >/(Xk ) = - (Xkpk u~ u~ )/as. [451 

3.4.3. Reynolds-decomposed and weighted averaged equations. The decomposed form of  the 
balance equations can be derived by applying Reynolds decomposition and rewriting the averaged 
equations with the aid of  the weighted variables. The full details of the derivation are given in 
appendix B. The continuity and momentum equations can be summarized as follows. 

Continuity equation 

Momentum equation 

a5 (a~pfk) + v.(~,p;'~u~)=0. [46] 

L (O~kpx, u k )  + V.(O~kpXkUkUk)=V.(cXk(~xk+ ~Re)) "4- O~kpXkg "4- Mkl. [471 
~t 

In the momentum equation, the interfacial momentum transfer to phase k is denoted in the 
following way 

M~I = - ( Tk'  VXk ). [48]  

As mentioned above, the momentum transfer is modelled using empirical expressions, and the 
jump condition places a constraint on this term. This is described in section 4.4. 

4. CLOSURE LAWS 

4.1. Basic principles 

The equations in this section are applicable regardless of the averaging method used for the basic 
balance equations, and the averaging symbols are generally left out. When choosing closure laws 
for a two-fluid model, some basic principles must be considered in order to close the problem 
successfully, as discussed by Drew and Lahey (1993), Arnold et al. (1990) and Truesdell and Toupin 
(1960). Four of these principles are: 

• equipresence; 
• well-posedness; 
• frame indifference; 
• fulfilment of the second law of  thermodynamics. 

Equipresence means that any variable described by a closure law should be a function of  all the 
other variables unless the independence of  any of them can be shown. Well-posedness means that 
the set of differential equations has a unique solution which is stable. Frame indifference means 
that the closure laws should not depend on the reference frame. 

An entropy inequality can be obtained from [8], table 2 and the second law of  thermodynamics. 
According to Ishii (1975), this inequality is used as a restriction on the constitutive laws to ensure 
that the second law of  thermodynamics is fulfilled. The entropy inequality should always be 
fulfilled, but most models do not take this into consideration. Arnold et al. (1990) presented a 
method to test whether the closure laws in combination with the balance equations fulfil the second 
law of thermodynamics. The entropy source originates both from heat transfer and from viscous 
dissipation. In many cases, the entropy increase is negligible, particularly for cases without heat 
transfer, as the viscous contribution is often small. However, the need to investigate the second 
law of thermodynamics should not be underestimated, as a violation of  this principle is a warning 
that the model is not physically sound. 
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4.2. Classification o f  closure laws 

A set of averaged partial differential equations describing a two-phase flow problem needs extra 
equations to close the system. As mentioned in section 1.5, the closure laws are of three types: 
constitutive, transfer and topological laws. The constitutive laws relate physical properties using 
axioms and experimental data. The transfer laws are empirical equations that describe the 
interaction between the phases occurring at the interface. The topological laws are sometimes 
needed to describe the spatial distribution of a flow variable, e.g. for one-dimensional pipe flow 
models of two-phase mixtures in which the radial concentration or velocity distribution of one of 
the phases may be needed. 

The different types of closure laws just mentioned are sometimes grouped together and simply 
referred to as constitutive laws. However, as stated by Bour6 and Delhaye (1982), the division of 
the closure laws into the three types mentioned is more appropriate, as these types have different 
physical significance. 

The key to accurate modelling lies to a large extent in the closure laws used. A considerable 
number of models has been developed for this purpose, but, keeping in mind the vast numbers 
of  possible two-phase flow configurations, it may still be difficult to find suitable closure laws for 
a specific case. To limit the present study, only closure laws appropriate for gas-particle flows have 
been considered. 

4.3. Constitutive laws 

The constitutive laws specify how the physical parameters of a phase interact with each other, 
but do not describe the transport of mass, momentum or energy across the interface between the 
phases. The interracial momentum transfer is described in section 4.4, while interracial mass and 
energy transfer have been excluded from this study. For the particulate phase, there are two quite 
different ways of modelling such flow parameters as dynamic viscosity, bulk viscosity and particle 
pressure. One is to make empirical models based on the particle properties and the local voidage. 
These traditional models are relatively simple, and are thus easy to implement in a computer code. 
The traditional models will be discussed in the present section. The other way to model these 
properties is to use the so-called kinetic theory of granular flow, e.g. Jenkins and Savage (1983) 
and Savage and Jeffrey (1981). Generally, these kinds of models are more complex and 
time-consuming to solve, but many researchers believe that they are applicable for a wider range 
of problems. Models based on the kinetic theory of granular flow are discussed in section 5. 

4.3.1. Viscous stress. The viscous stress of phase k of a two-phase mixture, ~k, enters into the 
momentum equations from the term V . ( ~ T  x~) in [47], which is split up into a pressure term and 
a shear stress term as 

V ' ( ~ k T ~ ) = V ' ( ~ ( - - P k 7  + ~))  = --V(~kPk) + V'(~ 'k) .  [49] 

The physical phenomena in gas-particle flows giving rise to the viscous stress are not well 
understood, and the literature is inconsistent in the use of terms such as mixture viscosity, apparent 
viscosity, effective viscosity, suspension viscosity, etc. 

When studying the literature, it is sometimes not fully clear whether an author refers to a stress 
in the gas phase, in the particulate phase or in the mixture as a whole. Furthermore, when discussing 
the particulate phase viscosity, pp, it is often uncertain whether or not the fluctuating stress tensor 
contribution has been included, i.e. the shear contribution of the tensor 7~ ~. 

The stress tensor of both phases is often modelled using the Newtonian strain-stress relation 

~. = ~k(V'Uk)7+2 pk(Sk -- ~(V Uk)7), [50] 

where the strain-rate tensor is defined by 

Sk ~--- l(VUk + (VUk)T) [51] 

Non-Newtonian properties of the particulate phase can be taken into account by modelling the 
particle viscosity as a function of the voidage, #r =/~p(e(~), as will be discussed further in this 
section. The bulk viscosity of phase k, ~k, is commonly set to zero in both phases, in accordance 
with Stokes' assumption, e.g. Panton (1984). In practice, the reason for neglecting the bulk viscosity 
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is the lack of reliable measurement techniques, cf. Pritchett et al. (1978). However, it is possible 
to derive an expression for the bulk viscosity theoretically, using the kinetic theory of  granular flow, 
cf. section 5. 

To fully describe the stress in each phase, as required for a two-fluid model, expressions for the 
gas and particle viscosities are needed. The gas and particle viscosities are often set to a constant 
value for each of the phases or are neglected. At high particle concentrations, the particle viscosity 
is several orders of  magnitude larger than the gas viscosity. As mentioned earlier, the particle 
viscosity may be modelled as a function of the voidage. However, the vast majority of the viscosity 
models available are for the mixture viscosity only. It is not obvious how the mixture viscosity is 
related to the phase viscosities, but one way is to assume a linear relationship and weight the 
viscosities as 

pmix = CCGgG + (1 -- CCZ)pp. [521 

The validity of  this crude assumption has not been verified, but it offers a way of modelling the 
particle viscosity for dilute suspensions by inserting the gas viscosity and the mixture viscosity taken 
from one of  the mixture viscosity models presented below. 

Table 3 gives a brief summary of mechanisms suggested in the literature to contribute to the 
viscosity of the respective phases. Note that the reasoning is quite similar for both phases when 
explaining the kinetic and collisional effects, the main difference being the different scales used for 
the phases. Hwang and Shen (1989) suggest that the particle presence effect gives rise to a stress 
in the particulate phase only. Many of the ideas used to define the particulate phase viscosity are 
closely related to the kinetic theory of gases. 

Table 3. Viscocity mechanisms in the gas and particulate phases 

Effect Gas phase Particulate phase 

U(y) 

Kinetic effect 

U(y) • 

t2, 
Collisional effect 

A s 

Particle presence effect 

Random molecular motion across a plane and 
mean gas velocity gradient give rise to 
momen t um transfer across the plane 

Inter-molecular forces. When the average 
spacing of molecules is only a few times their 
diameter, attractive forces between the mol- 
ecules become significant. Negligible in gases 
where the mean path is large, but important  
in liquids 

No contribution of this effect to the gas 
viscosity has been found in the literature 

Random particle motions across a plane 
and mean gas velocity gradient give rise to 
momen tum transfer across the plane 

Frictional inter-particle forces. May be 
very large when the solids concentration is 
high 

Shear stress acting on As due to the fluid 
force on the surface of the particles 
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The kinetic contributory effect to the viscosity of a gas can be understood by considering the 
gas on a molecular level, e.g. Panton (1984), pp. 142-145. The source of kinetic shear stress is the 
microscopic transport of momentum by random molecular motion across a plane, with different 
mean gas velocities on each side of the plane. The momentum difference that the gas molecules 
experience when they cross the plane is balanced by a shear stress acting on the plane. The kinetic 
contribution to the viscosity is, according to kinetic theory of  gases, defined as the proportionality 
constant between the kinetic shear stress and the gradient of the mean gas velocity parallel to the 
plane with respect to a coordinate direction normal to the plane. A corresponding effect is present 
in the particulate phase, but on a larger scale, i.e. replacing the gas molecules with particles in the 
previous discussion. 

The effect referred to as collisional viscosity is an effect of the tangential force arising from 
molecular interactions between nearby molecules, which can be likened to the frictional sliding that 
occurs between particles during a collision. In the gas phase, the molecules are at a mean distance 
such that the collisional effect is negligible as compared with the kinetic effect, but this effect 
dominates over the kinetic effect in a liquid, cf. Panton (1984). In the particulate phase, the 
collisional effect is the dominant contribution to the viscosity at high particle concentrations. The 
normal force arising from particle collisions is included in the collisional particle pressure term 
discussed in section 4.3.3. 

Several workers discuss a viscosity effect arising from particles moving along the line of centres 
between the particles. This effect is referred to as the proximity effect in the present 
publication. The effect is related to the lubricating layers that exist between the particles in 
the gas-particle flow, i.e. to the viscous region in the gap between two nearby particles. In 
contrast to the effects discussed in table 3, the proximity effect is related to the mixture viscosity, 
and it is thus not included in the table. Theoretical models for the mixture viscosity based on this 
effect have been proposed by e.g. Einstein (1906, 1911) and by Frankel and Acrivos (1967), cf. 
below. 

The first model presented for the mixture viscosity of dilute gas particle flows with less than 3% 
volume concentration of particles was that of Einstein (1906, 1911), who proposed that 

l~m,x = /~(1 + 2.5~p + O(C~p)), % ~< 0.03. [53] 

Another model for the mixture viscosity of dilute flows was presented independently by Brinkman 
(1952) and Roscoe (1952), and is given by the following equation: 

/~,,,,~ = #~,(1 - ~p) 25. [54] 

The mixture viscosities for dilute suspensions obtained from [53] and [54] are shown in figure 4. 
In the limit of densely packed particles, e.g. in the dense part of a bubbling fluidized bed, a 

theoretical model based on the proximity effect was developed by Frankel and Acrivos (1967): 

9 (  [O(p/~p . . . . . .  ]13 ~ O~p/O~p . . . . .  ~ 1, [55] 
~mix = ]'LG -I ~[~p/~p,max---"-~l/3J ' 

where % .... is the maximum possible particle concentration. 

1,95, 

.~ 1.9 
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Figure 4. Mixture viscosities for dilute suspensions. 
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F i g u r e  5. M i x t u r e  v i s c o s i t i e s  f o r  d e n s e  s u s p e n s i o n s .  

Another theoretically based model applicable to high particle concentrations is presented by 
Vand (1948). In addition to the effect taken into account by Frankel and Acrivos, this model also 
includes the collisional effect of the particles. For spherical particles, the model can be stated as 

/-/mix = ]~G exPEl  _ 0.609~p J" [561 

An empirical model for dense suspensions is that of Eilers (1943) 

25 ( 
[571 ~mix = /-~G "i" ~ [1  - -  ~ p / ~ p  . . . .  1 2 ) '  

The mixture viscosities for dense suspensions obtained from [55]-[57] are shown in figure 5. 
Particle concentrations between the extremely dilute and extremely dense regions are commonly 

observed in many gas-particle flow applications, such as bubbling fluidization. A theoretical model 
that also covers the intermediate region was presented by Graham (1981) 

( 9 [  1 ] [ ~  l 1 ] ) 
]-/mix = ~G ~ "l "t- 0.51// 1 + ~k [1 + 0] 2 + 1 + 2.5ep , [581 
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F i g u r e  6. M i x t u r e  v i s c o s i t i e s  f o r  t h e  e n t i r e  r a n g e  o f  p a r t i c l e  c o n c e n t r a t i o n s .  
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Table 4. Empirical constants for [64] 

B~ B_, Source 

-8 .76  5.43 Gidaspow and Ettehadieh (1983) 
- 10.46 6.577 Ettehadieh et  al. (1984) 
-10 .5  9.0 Gidaspow et al. (1989) 

This model converges to Einstein's model, [53], in the limit of low particle concentrations, and to 
the Frankel and Acrivos model [55] in the limit of maximum particle packing. 

Another model for the mixture viscosity covering the entire range of particle concentrations is 
that of Ishii (1977) 

},/,mix = /~6(1 - ~ p / ~ .  . . . . .  ) -2"Sxp'max(!tp + 0"4;'G)"(PP + ;'Ci) [60] 

Assuming the viscosity of the particulate phase to be considerably greater than that of the gas 
phase, [60] is simplified as 

~mix = ~ G ( 1  - -  0~p/@p . . . .  ) 25,,,m,,. [ 6 1 ]  

The mixture viscosities obtained from [58] and [61] are shown in figure 6. 
4.3.2. Gas pressure. The gas pressure is set equal to the static pressure, PG --- P. 
4.3.3. Particle pressure. The particle pressure is more difficult to interpret than the gas phase 

pressure. In the literature, there are two different ways of formulating expressions for the 
particle pressure. One is based on the kinetic theory of granular flow, which is an extension of 
the kinetic theory of dense gases, cf. section 5. Here, the alternative traditional approach based 
on the particle properties and the local voidage has been used, as described below. 

The pressure in the particulate phase is considered as the sum of three effects, one corresponding 
to momentum transport caused by particle velocity fluctuation correlations, Pp.kin, o n e  caused by 
particle interaction (collisions), Pp.con, and one being a contribution from the gas phase pressure. 
The pressure gradient in the particulate phase is thus 

V(~pPp) = V(XpPp,k,, ) + V(~pPp.+oH) + V(~pP+). [62] 

The first term on the right-hand side of [62] is neglected in the traditional models. The second term 
of [62] is referred to as the particle collisional pressure gradient. A comprehensive discussion of 
the particle collisional pressure in fluidized beds is presented by Campbell and Wang (1991). The 
collisional component is the dominant effective pressure effect in the dense regions of a fluidized 
bed. This pressure transmits a force both by short-duration collisional impacts and by 
long-duration particle-particle contacts. Experimental results by Campbell and Wang show that 
the particle collisional pressure is highest if the bed is not fluidized and the particles rest on each 
other, i.e. when the long-duration contact force is high. As the gas flow increases towards the 
minimum fluidization velocity, the particle collisional pressure decreases as the drag force starts 
to dominate over the long-duration contact force. Increasing the gas velocity above the minimum 
fluidization velocity causes the particle collisional pressure to increase again, now as a result of 
an increasing frequency of the short-duration collisional impacts. 

Table 5. Empirical constants for [65] 

Go C ~* Source 

1.0 600.0 
1.0 500.0 
1.0 20.0 

0.376 Bouillard et al. (1989) 
0.422 Gidaspow and Syamlal (1985) 
0.62 Gidaspow and Ettehadieh (1983) 
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The gas pressure gradient enters into [62] as a 'buoyant'  effect, i.e. if there is a gas pressure gradient 
through a collective of particles, it will exert a force on the particles, and, thus, the particle pressure 
gradient will be reduced or increased depending on the sign of the gas pressure gradient, in accordance 
with [62]. 

Several models for the particle collisional pressure-gradient term presented in the literature are 
based on the following formulation 

V (c~p Pp.co,, ) = - G (c~)V~. [63] 

The effect of the particle collisional pressure-gradient term is to keep the particles apart so that the 
calculated particle concentration does not exceed the maximum concentration obtainable for a given 
sphericity and size distribution of the particles. This term is more often referred to as the 
particle-particle interaction force, and this terminology will be used in the following. The function 
G ( ~ )  can be thought of as a modulus of elasticity for the particulate phase, which must be modelled 
empirically. 

An overview of different models for the modulus of elasticity is given by Massoudi et al. (1992). 
The empirical models of G compared here are of two types 

G(~u) = 10 B,~o + B-' [64] 

o r  

G ( ~ )  = Goe -c(~°- ~'). [65] 

Empirical values for the constants in [64] and [65] obtained by different investigators are listed in 
tables 4 and 5, respectively, and the results are plotted in figures 7 and 8. 

As shown in figures 7 and 8, the results obtained from the different models of G differ widely. The 
formulation of G as a function of the voidage only may not fulfil the principle of equipresence for 
closure laws by Drew and Lahey (1993), mentioned in section 4.1, which could then partly explain 
the large discrepancies between the results. However, the main effect of the particle-particle 
interaction force is only to prevent the particulate phase from becoming too densely packed, and 
the large deviations between the different models for G may not significantly affect the time-averaged 
solutions for the concentration, velocity and pressure fields of the phases, although this remains to 
be investigated. 

4.4. Transfer laws 

4.4.1. Mechanisms of interfacial momentum transfer. Different mechanisms of interfacial 
momentum transfer have been discussed for one-dimensional two-fluid models by, e.g. Albraten 
(1982) and Andersson (1991). They investigated the importance of the different mechanisms by 
studying the dimensionless equations of motion and making comparisons with experimental results 
from fluidized beds. In the present work, a more general, three-dimensional formulation is used, 
cf. Ishii (1975) and Drew and Lahey (1993). 

The term under consideration here is the interfacial momentum transfer term 

M~, = - ( L .  VX~ ) [66] 
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Figure 7. Modulus of elasticity obtained from [64]. 
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Figure 8. Modulus of elasticity obtained from [65]. 

from the Reynolds-decomposed and averaged momentum equation [47]. Neglecting the fluctuation 
stress term T R°, the right-hand side of [47] becomes 

V'(~k~k)+~kpkg + Mk, 

= -~tkVP - PV~. - -  V(~pPp,co t l )  + V'(O~k'~k)+O~kpkg + Mk,, [67] 

where the stress tensor Tk has been introduced as Tk = --Pk7 + ~k and the gas pressure is set equal 
to the static pressure. The particle-particle interaction force, -V(~pPp,~o,), is present only in the 
particulate phase equation. According to Drew and Lahey (1993), it has become customary to 
rewrite the interfacial momentum transfer, Mk~, in a form involving the interfacially averaged 
pressure and shear stress of phase k. To do this, the following definitions of the weighted averaged 
interfacial pressure and shear stress are introduced 

and  n k l  is rewritten as 

P, = < PVXk.n~ >/<VX~.nk >, 

~, = <~A(VXk'nk)>/<VXk "nk > [68] 

Mk, = -- < T~" VXk > 

=< PVXk > - <+k'VXk> 

= p,<vx~ > - +,.<vx~ > -  <~,.vx~ > 

= Pz V~A - +l" VaA + M ~ .  [69] 

Here, M~, = - < ~ . V X ~ .  > is a generalized drag force acting on phase k and 

~,  = - ( P ~  - P , ) 7  + ( ~  - ~,) [701 

is the generalized stress tensor associated with this drag. 
A form of the jump condition for the interracial momentum transfer is given by [38]. It can be 

shown that this jump condition is also applicable to the generalized drag. A summation of [69] 
over both phases gives 

2 2 2 2 
Mk, = Pi ~ V~xk- {x" ~', V~, + 2 M~,. I71l 

The phasic relation, [21], can be differentiated to show that the first and second terms on the 
right-hand side of [71] are equal to zero. Using the momentum jump condition given by [38], the 
remaining part of [71] is the jump condition for the generalized drag 

2 
M~, = 0. [72] 

k=l 

The right-hand side of the averaged momentum equation [67] can now be written as 

- - O ~ k V P  - -  V(~pPp,col,) + ~ ' ( O ~ k ' ~ l , - ) " ~ k p k g  "~- M~, + (P, - P ) ~ O ~ k  - -  "~l 'VO~k,  [73] 
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where the last two terms are referred to as the interfacial pressure difference effect (or the 
concentration gradient effect) and the combined interfacial shear and void gradient effect, 
respectively. According to Albr~tten (1982) and Rathman (1981), the interfacial pressure difference 
effect is believed to be insignificant for the two-fluid model. According to Ishii and Mishima (1984), 
the combined interfacial shear and void gradient effect dominates over the generalized drag, M~I, 
for separated flows, but is generally ignored for dispersed flows, i.e. for the type of  flow considered 
here. Thus, the right-hand side of  [47] can be simplified as 

-- ~k VP - V(~pP0.co,,) + V'(~k~k) + ~kpk g + M~,I. [74] 

The generalized drag concept was originally conceived for gas liquid flows, e.g. Ishii and Mishima 
(1984), where the interfacial pressure difference effect and the combined interfacial shear and void 
gradient effect have a physical justification. However, the physical interpretation for gas-particle 
flows is less clear. For a dispersed flow, M~ is the generalized drag force per unit of volume on 
a suspension of particles of mean diameter dr, and it is normally divided as 

M~, = np(F~r + F~r + Fam 71- Fhi-]- Fot), [751 

where the forces in the brackets on the right-hand side of [75] are the forces acting on a single 
particle in a suspension and where np, the number of particles per unit volume, is defined as 

no = 6(1 - ~¢)/n~. [76] 

The forces in [75] are discussed in the following subsections for the particulate phase only. The 
corresponding forces for the gas phase are obtained by changing signs in the particulate phase force 
expressions in accordance with the jump condition for the generalized drag [72]. 

4.4.2. Stationary drag force. The stationary drag models available in the literature are based 
either on correlations for the drag coefficient for one particle in a suspension, CD, or on the pressure 
drop per unit length in a suspension. 

The stationary drag force on a particle in a suspension can be defined either in terms of the 
relative superficial gas velocity or the relative interstitial velocity. It seems customary for researchers 
who base their models on the work of Richardson and Zaki (1954) to use the definition based on 
U0 = ~G(U~ - Up), which is sometimes referred to as the apparent relative velocity, cf. Boemer et al. 
(1995). For  researchers coming from other fields, for example boiling, the definition used is 
normally based on the relative interstitial velocity (Ur = U~ - Up). 

The drag force acting on a single particle in a suspension can be written as 

Fdr = ICDpGIUIU(n~/4), [77] 

where U is either the apparent relative velocity or the relative interstitial velocity, depending on 
the velocity on which the drag coefficient CD is based. The contributory effect of the stationary 
drag force to the generalized drag [75] is 

n p F d r  = ~ (1 

For  the pressure drop per unit of length in a 

n o F d r  

To solve the averaged momentum equations 
written as 

- =~)CDP~IUIU. [78] 

suspension, Foscolo et al. (1983) showed that 

= ~cVP. [79] 

numerically, the stationary drag force is usually 

npFdr = KUr, [80] 

where K is sometimes referred to as the drag function. 
According to Di Felice (1994), the steady-state force balance applied to a particle in a suspension 

is 

Vpppg -~- Fdr  - -  V p V P  : 0 [81] 

if there is no effect of  particle collisions. The pressure gradient in a steady homogeneous suspension 
is equal to the buoyancy force exerted by the homogeneous mixture 

VP = ~GpGg + (1 -- ~c)P0g. [82] 
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This expression is sometimes referred to as the manometer  formula, and it is obtained by adding 
the steady-state momentum equations of  the two-fluid model, ignoring the viscous terms and the 
particle-particle interaction force. When [81] and [82] are combined, the drag force acting on a 
particle in a suspension can thus be expressed as 

Fdr  = - -  ~G g , , ( l ) p  - -  / ) G ) g .  [ 831  

This is the drag force included in the expression for the generalized drag, [75]. Wen and Yu (1966) 
formulated a slightly different expression for the stationary drag force, based on a steady-state force 
balance applied to a particle in a suspension similar to that of[81] but in which the pressure gradient 
was replaced by the buoyancy force, p~g, exerted by the gas phase only. Thus, the stationary drag 
force defined by Wen and Yu becomes 

1 Fdr, [841 FK = - -  V~(pp --  p~,)g = ~ 

i.e. it differs by a factor ~G from the form of the stationary drag force included in [75]. In the work 
of Wen and Yu, it was shown that 

IFKI/IFd = CDK/CD~ =.fl~,~), [85] 

where the voidage function was taken as flc~o) = ~ 4~,5 based on the work of Richardson and Zaki 
(1954). 

To compute the drag function, K, the relation CD = ~CDK obtained from [84] must be combined 
with [78], [80] and [85]. Employing the apparent relative velocity in [78], the following expression 
for the drag function, proposed by Gidaspow (1986), is obtained 

3 ,1~ , [86] 

where the drag coefficient on a single sphere is given by Schiller and Naumann (1935) 

[24(1 + 0.15(Re)"~87)/Re if Re < 1000 
CD~ = [0.44 if Re > 1000 [871 

and the Reynolds number is 

Re = p~;~<~lUp - U~idp/'ll~;. [88] 

Reynolds numbers larger than 1000 are not often encountered in ftuidized beds except at 
combinations of  high pressure operation and large particles. The drag function correlation, [8@ 
is valid only for dilute suspensions, with ~(; > 0.8. A summary of alternative correlations for the 
drag coefficient for a single sphere, CD,, is given in a book by Clift et al. (1978). 

A different expression for the drag function for particulate flows, K, based on the relative 
interstitial velocity, was derived by Ishii and Zuber (1979). They introduced a Reynolds number 
based on the mixture viscosity, motivated by the fact that the presence of other particles makes 
a single particle see an increase in the resistance to its motion which appears as though it arises 
from an increased viscosity. Using a similarity hypothesis for the viscous regime, they derived the 
following expression 

3 
K = ~ CD(1 -- ~c,)p(;lUr- Uc;I, [891 

where the drag coefficient for a particle in the suspension is given as 

C~ = 24(1 + 0.1(Re)"TS)/Re, [901 

and the Reynolds number is now defined as 

Re = p~lUp - U~ldp,,'/~,m. [911 

The mixture viscosity is defined by [60], in which the maximum packing is ap ...... = 0.62. The drag 
function correlation, [89], should be used with caution when :~p is close to its maximum value, ap ...... 
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because, in this limit, the mixture viscosity becomes infinite and the Reynolds number becomes 
zero, resulting in an infinite value of the drag function. 

An alternative drag function correlation is that of  Syamlal and O'Brien. This correlation has 
been used for both circulating and bubbling fluidized beds, cf. Syamlal and O'Brien (1988) and 
Syamlal and O'Brien (1989), respectively. The correlation is expressed as 

3 1 
K = ~ CDpG ~ UG(1 -- uc)lUp -- U61, [92] 

where R, is the ratio of Richardson and Zaki, i.e. the ratio between the falling velocity of a 
suspension (superficial) and the terminal velocity of a single particle. Syamlal and O'Brien (1988) 
suggested a correlation for this ratio as a function of the Reynolds number based on the relative 
interstitial velocity and the voidage 

2Rt = Ct(~G) -- 0.06Re 

+ ((0.06Re) 2 + 0.12Re(2C2(~6) - Ct (~G)) + C~(UG)) °5, [93] 

where the functions C~(~G) and C2(~G) are given by 

fO.8~ 28 if c(~ < 0.85 [94] 
CI(~G) : ~14 and C2(c~c) : ~ 6 5  if ~G > 0.85" 

The drag coefficient in [92] is obtained from the correlation proposed by Dallavalle (1948) 

where 

CD = 0.63 + 4.8 [95] 

Re = pGIUp -- UGldp/pG. [96] 

Di Felice (1994) recently presented a correlation for a voidage function, g(~G), which relates the 
stationary drag force for a particle in a suspension to the drag force on a single particle. This 
voidage function is related to the voidage function by Wen and Yu, [85], as 

g(~G) = IF~rl/IF, I = CD/CDs : (~Ccf((~G). [97] 

Di Felice expresses the voidage function in the form g(~G) = COG ~ which, in combination with [78], 
[80] and [97], gives an expression for the drag function, K. Employing the apparent relative velocity 
in [78], the following expression for the drag function is obtained 

3 
K = ~ Co,(1 - c(~)pGIUp -- UoI.~-", [981 

where the drag coefficient is given by Dallavalle (1948) as 

Cos = 0.63 + 4.8 . [99] 

Di Felice showed that the exponent, B, is not a constant but depends on the Reynolds number as 

B = 3.7 - 0.65 e x p ( -  (1.5 - log(Re))2/2). [100] 

Figure 9 shows the different correlations based on Co. The drag function is plotted as a function 
of  the voidage for a relative interstitial velocity of  1.0 m/s, a sphericity of 1.0, a maximum particle 
volume concentration of  0,62, a mean particle diameter of  0.7 mm and a temperature of 293 K. 

As shown in the figure, there is quite good agreement between the different correlations, with 
an exception for the correlation of Ishii and Zuber, [89]-[91], in the dense region. This deviation 
is a consequence of the mixture viscosity tending towards infinity. 

One of  the difficulties encountered in the freeboard region of circulating fluidized beds is the 
prediction of  the clustering effect, cf. O'Brien and Syamlal (1993). The terminal velocity of  a cluster 
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Figure 9. Comparison of the drag functions based on Co. 

exceeds the terminal velocity of a single particle. A correlation for the terminal velocity ratio taking 
into account the clustering effect is given by O'Brien and Syamlal (1993) 

Rc~,, = R,(1 + C3(~o)Re c~o exp(-0 .005(Re - 5) ~ - 90(Re - 0.92)2)), [101] 

where C3(~o) is defined by 

)'250 if Go = 98 [kg/m 2, s] 
C3(7o) = ~1500 if Gp 147[kg/m-, s] [102] 

and Gp is the particle recirculation mass flux. Replacing the velocity ratio, R, with the velocity ratio 
corrected for cluster effects, Rd,, in the model by Syamlal and O'Brien, [92]-[94], yields a drag 
function that takes into account cluster effects. 

Figure 10 shows the drag function, corrected for the clustering effect, for different mean particle 
diameters. This effect can be seen in the plots as a local minimum in the drag function in the voidage 
interval 0.7q3.95. As shown in the figure, the clustering effect decreases with increasing diameter. 
With the exception of the particle diameter, the flow parameters used in figure 10 are identical to 
the ones used for the correlations in figure 9. 

A general correlation for the pressure drop per unit of length over a fixed bed was introduced 
by Ergun (1952), who proposed that 

A P  1 5 0  ( |  - -  0~mf)2 ] ~ G U °  ( l  - -  ~ m f )  p G U o  
L - - ~  + 1.75 3 qSdp" [103] 

0~mf ( ~ b d r , )  2 ~ml" 

Many researchers, e.g. Gidaspow (1994), assume the Ergun equation to be valid under fluidized 
conditions, for ~o < 0.8, so that the equation can be rewritten as a drag function applicable to a 
two-fluid model. This expression of the drag function is obtained by combining the Ergun equation 
with [79], replacing the pressure gradient by A P / L ,  and [80], as 

K = 150 (1 -- ~o)~#o (1 -- ~o)polU, - U~I [104] 
eo(~bdo) 2 + 1.75 ~bd~ 
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Figure 10. Drag function by Syamlal and O'Brien, [92]-[94], corrected for the clustering effect for different 
particle diameters with the aid of [101]. 
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Gibilaro et al. (1985) introduced a correlation for the pressure drop per unit length for fluidized 
beds, covering the whole range of possible values for the voidage 

--L- = \--R-e-e + 0.336 (1 - ct~)ctG 48. [lO5] 

Combining [105] with [79] and [80] and replacing the pressure gradient with AP/L,  the drag function 
becomes 

//17.3 ) pclUp - UGI 
K = \ Re + 0.336 ~/p (1 - ctG)~ L8, [1061 

where the Reynolds number is defined by [88]. 
Figure 11 shows the two correlations based on the pressure gradient for the same flow conditions 

as those in figure 9. The correlation given by Ergun shows quite good agreement with the 
correlations based on the drag coefficient, even though it was originally developed for a fixed bed, 
while the correlation of  Gibilaro et al. gives the lowest values of all the drag function correlations, 
at least for the flow conditions chosen in the comparison. It should be noted that, of  all the drag 
correlations included here, the Ergun correlation is the only one to take into account the particle 
sphericity. 

4.4.3. Transverse forces. A particle moving in a fluid experiences a transverse force (sometimes 
referred to as lift force), if the flow is non-uniform (i.e. in the presence of a velocity gradient), if 
the particle is rotating or if the particle moves in the vicinity of  a wall. Most investigations of 
transverse forces have been done for low Reynolds numbers (<< 1) or for very large Reynolds 
numbers (>  105). Oesterl6 (1994), however, made an investigation of these forces in the Reynolds 
number range of  1-1000, which is typical for gas-particle flows. The study does not take into 
account the presence of other particles, but the results can be applied if the particle diameter is 
very small in comparison with the distance between particles. The study shows that: 

• the transverse forces are not negligible and tend to increase with increasing particle diameter; 
• if there are no wall-particle collisions, the transverse force resulting from the velocity gradients 

is at least as important as the transverse force caused by the particle rotation; 
• if there are wall-to-particle collisions, the transverse force caused by the velocity gradient 

decreases but is not negligible. 

According to Drew and Lahey (1993), the transverse force resulting from the velocity gradients 
acting on the particles in a suspension per unit volume is given by 

npFtr = --CtrpG(1 -- ~G)(UG -- Up) × (V × UG). [107] 

4.4.4. Added mass force. The added mass effect occurs when one phase accelerates in relation 
to the other. The accelerating phase must overcome the inertia of the mass that lies in its path. An 
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Figure 11. Comparison of drag functions based on the pressure gradient. 
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expression for the added mass force on the particles in a suspension per unit volume is given by 
Drew and Lahey (1993) 

= - [ l O S ]  

The added mass coefficient, Corn, is, at least, a function of the voidage (cf. Zuber (1964) and 
Rathman (1981)). 

Drew and Lahey (1990) stated that neither the added mass force, [108], nor the transverse force, 
[107], is frame-indifferent. Their sum is, however, for the case that both correction coefficients are 
equal, i.e. if C,r = Cam, although in a personal communication with Drew and Lahey, Acrivos 
pointed out that a fundamental error had been made in the derivation and the conclusions were 
therefore modified to apply only to a fluid with small vorticity. 

4.4.5. Histor),force. The history force in two-phase flows comes from the acceleration of one 
phase relative to the other, and is a result of momentum being diffused through the boundary layer. 
The history force is sometimes also referred to as the Basset force. The history force acting on the 
particles in a suspension per unit of volume is 

-p 9 ~ f '  a(r, t)d~ 
npFh~ = 7/-(1 -- :~c) - Z_--, [109] 

,V/I--T 

where the appropriate frame-indifferent acceleration, according to Drew and Lahey (1993), is given 
by 

(DGU<; DpUp~ 
a ( r , t ) = \  Dt Dr- }-(Uc~-UP) x (V x UG). [110] 

4.4.6. Other forces. As shown by Arnold et al. (1989), forces additional to those mentioned 
above act on a sphere in an inviscid flow. Arnold et al. claim that it may be necessary to include 
some of these additional forces in order to fulfil the second law of thermodynamics, although they 
are usually ignored. 

5. TURBULENT TWO-PHASE FLOWS 

5. 1. Background 

For single-phase flow applications, turbulence is associated with the chaotic time-dependent 
multi-scale vortices occurring for flows with Reynolds numbers above a certain limit. The standard 
way of modelling turbulent single-phase flow is to derive a Reynolds decomposed and 
time-averaged form of the Navier-Stokes equations, cf. Hinze (1975). The equations differ from 
the laminar form by an extra stress term, the so-called Reynolds stress. 

The meaning of turbulence is less established for gas particle flows, and a short introduction 
is thus given below. The turbulence in the gas phase is similar to that of single-phase flows, although 
the generation and dissipation mechanisms may differ, as these are influenced by the presence of 
particles. Turbulence in the particulate phase can physically be understood as the particle velocity 
fluctuations caused by collisions between particles and interactions with the gas phase. 

A description of turbulence models for the gas and particulate phases is presented in this section. 
The section starts with the introduction of a formulation of the transport equations (continuity 
and momentum), which is an alternative to the traditional formulation presented in section 3. This 
alternative formulation, derived by He and Simonin (1994), gives an explicit formulation for the 
interfacial momentum transfer using a Lagrangian approach, but it also introduces the need for 
new closure laws. 

5.2. Transport equations 

An expression for the interfacial momentum transfer for the particulate phase, Mp~, can be 
obtained from the equation of motion of a single sphere in an infinite fluid, cf. He and Simonin 
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(1994). The equation of motion of a single sphere, moving in an unsteady non-uniform 
incompressible fluid, was proposed by Gatignol (1983) and Maxey and Riley (1983) for the case 
of a low particle Reynolds number, Re = pBdplUp -- UB[//~B < 1. They also made the assumptions 
that the gas flow characteristics vary slowly on the scale of a particle and that the size of the sphere 
is small compared with the smallest length scale of the gas flow. In most gas-particle flows 
characteristic for fluidization, the Reynolds numbers are in the range of 1-1000 for particles 
diameters in the range of 10 4-10-3 m, cf. Oesterl6 (1994). The equation of motion of a single sphere 
can be generalized in the case of compressible flows at higher Reynolds numbers, by 

~d~pdup I ~ 1 ~d~0. d 
P P 6  dt----~RBCD~ 4 IfiB -- UPI(fiB -- UP) A-2 pG 6 AA ~ (fiB -- Up) 

+ 2 x/~PG/JBA"J0 ~ (fib -- Up) X/t _ * 6 V/~ + [111] 

where fib and/~ are the undisturbed gas velocity and pressure at the particle location, respectively, 
i.e. the velocity and pressure of the gas phase if the particle were not present. The terms on the 
right-hand side are identified as the stationary drag, the added mass force, the history force, the 
pressure gradient and the gravity force. Different correlations for the drag coefficient for a single 
sphere in an infinite fluid, CDs, and for the correction coefficients for the added mass and the history 
forces, AA and AH, can be found in the book by Cliff et al. (1978). 

It can be shown that the history force is negligible for gas-particle flows, provided that 
pG/pp < 0.002 and dp> 1/~m, cf. Vojir and Michaelides (1994) and Liang and Michaelides (1992). 
Liang and Michaelides also concluded that the added mass effect can be neglected because the 
added mass term is proportional to the density ratio. It is generally assumed that these conclusions 
can be extended to a single particle in a suspension. Equation [111] can then be expressed in the 
following Eulerian form 

8t (ppUp) + V-(ppUpUp)= . (fib -- up) -- V fi + ppg + fc, [112] 

where the particle relaxation time, r~p, is 

1 _ 3 PGColUp__fiG [ [113] 
r~p 4dp pp 

and fc represents the force exerted by other particles during collisions. The particle relaxation time 
is a characteristic time for the entrainment of particles by the surrounding gas. Multiplying [112] 
by Xp and applying the averaging operator in combination with a Reynolds decomposition 
including the pressure term,/~ = P + p', an averaged form of the particulate phase momentum 
equation is obtained 

8 
8t (~¢pppUp) + V.(apppUpUp)= -~pVP 

• uX ~ R e  +V (ap%~+~pTp) + ~pppg + Mpi, [114] 

where the interfacial momentum term is given by 

' ~PPP ur0, - ~ p < v ; >  ~0. [115 ]  Mp, = <r~p>~ ~ 

The collisional stress term, ~p~pX~, enters [114] from the average (Xpfc). The relative velocity is 
defined by 

U~, = Up - UB - <u~> x~'~, [116] 

where <u~>X,P, is the drift velocity (cf. section 5.3). The drift velocity represents the correlation 
between the gas phase fluctuating velocity and the spatial distribution of the particles. According 
to Simonin (1990), this velocity represents the dispersion of the particles by the large turbulent 
scales of the gas phase• 
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It can be shown that this formulation is equivalent to the formulation of [47], obtained from 
the traditional approach, provided that the interfacial momentum transfer, Mpl, is given by 

~PPP Uro, + <fiVXc). [117] 

Neglecting the terms involving correlations of the pressure fluctuations, cf. Bel Fdhila and Simonin 
(1992), the momentum equations for both phases can be rewritten in the general form 

(~kp~u~) + v.(~kp~ UkUk)= --~kVP 
St 

+ V" (o~.~ ~ + ~k 7 Re ) + ~kpk g + M~,I, [1 18] 

where the interracial momentum transfer, Mp, = - M~,, is given by K(UG - Up) if the drift velocity 
is neglected. Thus, neglecting the drift velocity, the interracial momentum transfer M;,, equals the 
generalized drag Mdi of [74]. A detailed discussion of the approach presented in this section is given 
by Peirano (1996). 

To close the momentum equations, models for the collisional and kinetic terms, (~k{~ ~ + ~k TR°), 
as well as for the drift velocity are required. 

5.3. Drift velocity 

A model of the drift velocity, proposed by Deutsch and Simonin (1991), is expressed as 

<u;> xp'p = D~p ~ V ~  - --  V~p [119] 
0~p 

with the assumption that the particles are suspended in homogeneous isotropic turbulence of the 
gas phase. The dispersion coefficient, D~p, is modelled as z~pkGv/3, where ,~p is the interaction time 
between particle motion and gas phase fluctuations defined in connection with [132], and kGp is the 
gas-particle covariance, defined in connection with [138]. If the turbulence is non-isotropic, the 
dispersion coefficient must be substituted with a tensor, cf. Deutsch and Simonin (1991). 

More advanced models for the drift velocity can be derived, for example with the Lagrangian 
history direct interaction approximation, cf. Reeks (1992, 1993), with a fluid-particle joint 
probability density function (PDF) and the Langevin equation, cf. Simonin (1995), or with 
asymptotic solutions, cf. Koch (1990). The model based on the fluid particle joint PDF gives a 
general transport equation for the drift velocity, whereas the model of Koch provides an algebraic 
expression with restrictions on the particle Reynolds number and the Stokes number. These models 
are not presented here, but an introduction to them is given by Peirano and Leckner (1997). 

5.4. Turbulence models for the gas phase 

A turbulence model for the gas phase of dilute suspensions was developed by Simonin and Viollet 
(1990). The model is a modified k-e model with additional terms taking into account the interfacial 
turbulent momentum transfer. This model was later applied to a bubbling fluidized bed by Balzer 
et al. (1995). 

The Reynolds stress tensor of the gas phase, T~ ", defined by [45], is modelled using a standard 
Boussinesq approximation 

T~ ~ = - pG < u ~ u ~  >xopo = _ ~ p o k o 7  + 2 # ~ ( ~ G  - ½(V. U o ) 7 ) .  [120]  

The dynamic turbulent viscosity of  the gas phase,/z~, is defined by/z~ = 2p~kcz'G/3, and the time 
scale of the large eddies, z~, by z~ = ~C,k~/ec, cf. Simonin (1995). Furthermore, the turbulent 
kinetic energy in the gas phase, k~, is modelled by the following transport equation 

(~Gpcka) + V'(~GpokcUG)=V' ~c Vkc 
t~t 

-~Gp~<u~u~)X°P°VUG - ~GpcEG + I-Lo, [121] 
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where the interaction term, Ilko, is defined as 

liko = ~opo ( - 2 k ~  + kop + (uo)Xppp'Ur0t) [122] 
z~p 

and the relative velocity, Ur,~, is defined by [116]. Finally, the differential equation for the dissipation 
of  turbulent kinetic energy, Eo, is given by 

EG - a c p ~  ~ (C, (u6u6)X°'°VUo + C,2Eo) + rl,o, 

where the interaction term, II, o, is defined by 

[123] 

EG 1-I,o = C,3 ~ rI,o. [124] 

The constants used in the k~-Eo model are chosen as C, = 0.09, a, = 1.0, a, = 1.3, C~ = 1.44, 
C,2 = 1.92 and C3 -- 1.2. All these constants except C3 have standard, single-phase flow turbulence 
values. The constant C,3 is included in the gas-particle interaction term, rI, o, of the Ec equation 
and has been determined empirically from turbulent gas-particle jet flows, cf. Elghobashi and 
Abou-Arab (1983). 

It is reasonable to assume that the values of C,,, (?,1, C2, C3 should depend on the type of particles 
and the type of  gas flow. Squire and Eaton (1994) investigated the values of C,2 and C,3 for 
homogeneous isotropic turbulence interacting with particles by comparing the solution of the kc-EG 
model with direct numerical simulation (DNS) data. They showed that these two constants are 
functions of, at least, the Stokes number, z~p/z~, and the loading, )top = appo/a~po, and that their 
order of magnitude can vary significantly for small Stokes numbers, i.e. for small particles affected 
by large eddies. The value of  the constant C~, for gas-particle flows has been discussed by Cao and 
Ahmadi (1995). 

In the k~ equation, the interaction term, Ilko, represents the energy necessary to accelerate the 
particles, or the energy transferred from the particles to the gas phase if the particles have high 
fluctuation velocities in a region where the gas phase turbulent kinetic energy is low. The present 
formulation assumes the turbulent production in the wakes behind particles to be in local 
equilibrium with the viscous dissipation, i.e. the particles are assumed to be smaller than the 
Kolmogorov scale in the gas phase. 

When applying the kG-E~ model presented in this section, one should also be aware of the 
treatment of  the wall region. It has been shown experimentally, e.g. Rashidi et al. (1990), that, when 
particles agglomerate in the wall region, the flow is disturbed. Rizk and Elghobashi (1989) observed 
numerically that the law of the wall does not hold true even when the suspension is very dilute. 
Some authors, e.g. Bolio et al. (1995), recommend the use of low Reynolds number kc-E~ models, 
but this method is also questionable, as damping functions must be expressed for gas-solid 
suspensions. 

More research is needed in order to accurately predict the gas phase turbulence in two-phase 
flows. A broader discussion on gas-phase turbulence models for gas-particle flows is given by 
Peirano and Leckner (1997). 

5.5. Turbulence models for  the particulate phase 

Turbulence models for the particulate phase available in the literature are based on the kinetic 
theory of granular flow. This treatment of the particulate phase uses classical results from the 
kinetic theory of dense gases, cf. Chapman and Cowling (1970), in combination with Grad's theory, 
cf. Grad (1949) and a linear theory developed by Jenkins and Richman (1985). The results of 
Jenkins and Richman are valid for granular flows without an interstitial gas, but Balzer et al. (1995) 
generalized the kinetic theory of granular flow to gas-particle flows. A brief outline of this theory 
is presented here. Note that, in the present section, the indices i and j are tensor indices. 
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The particulate phase is modelled as a population of identical, smooth and inelastic spheres. A 
conservation equation can be formulated in terms of the single particle velocity distribution 
function f ' )(x,  e, t) to yield the Maxwell-Boltzmann equation 

~f'~ c? 8, 0J"" , [1251 
8~- + ~ (cg" ' )  + ~ (F,..f") = ~ 7 -  col[ 

where c~ is the particle velocity, Fi = g , -  (c, - 5c,,,)/r~-p - (~?fi/~xg)/pp is the external force per unit 
of mass acting on a sphere and Of'/c~tlcol, is the rate of change of the distribution function owing 
to particle collisions. The ensemble-averaged value of a function ¢(e) is defined by 

( ~ ( e ) ) = l f ~ ( c ) f f ~ ( x , c , t ) d c ,  [126] 

where dc denotes an element of volume in the velocity-space surrounding the point e and np is the 
number of particles per unit volume, defined by the integral of the single particle velocity 
distribution function over the whole velocity domain. Multiplying [125] by ¢(e) and integrating 
over the velocity domain, one can obtain a transport equation for (¢ (e ) ) ,  as proposed by Chapman 
and Cowling (1970) 

84 (np(¢)) + ~ (np(¢C,)) 

where C(O) is the collisional rate of change for ~ and is defined by 

I I~/ ~fl) coil C(~) = ~ -  dc. [1281 

This term represents the integral, over all possible collisions, of the change of  ¢ due to a binary 
collision multiplied by the probability of such a collision. According to Jenkins and Richman 
(1985), C(¢)  can be expressed by 

c ( ¢ )  = z(O) - ~ o,(¢) - ~ o, ~ .  [1291 

The source term, Z(¢), represents the loss of the property ¢ due to inelastic collisions, and the flux 
term, 0i(¢), represents the transport of the property ~O during collision. Note that the derivative 
in the parenthesis of the last term is an argument to the function Oi. 

The rank of the tensor 0i(¢) equals one plus the rank of the argument ip. Thus, the rank of 
Oi(8~,/OCj) is a tensor of rank three if ¢ is a vector. The source and flux terms are defined by 
integrals involving the pair distribution function, f2)(x~, x2, et, e2, t), and can be calculated 
analytically using a linear theory, cf. Jenkins and Richman (1985), in combination with Grad's 
theory, cf. Grad (1949). In this derivation, the pair distribution function is expressed as the product 
of the single velocity distribution functions corrected by a factor go i> 1, according to the kinetic 
theory of dense gases, cf. Chapman and Cowling (1970). This factor accounts for the fact that the 
velocities of  two colliding particles are not statistically independent. An expression for this factor 
in the case of granular flows is given by Lun and Savage (1986) as go = (1 -- ap/~p . . . .  ) -2"5ap'max. 

A transport equation for the moment of order q, M~.q = ( C i Q . . .  Cq) with the fluctuation 
velocity C~ = ci - (ci) ,  can be obtained from [127] in combination with [129] using ~, = CIC; . . .  Cq, 
where m is the mass of a single particle. Noting that ~tppp = nprn, the continuity and momentum 
equations can be obtained using ¢ = 1 and ~ -- C~, respectively. These equations are identical to 
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[46] and [114]. The collisional stress tensor Ctp~ xp = - O j ( m C , )  is derived using the procedure 
described in the previous paragraph to yield 

4 ~ppg0(1 + e)(37 - TT) ~p~xp = _ 2ct~pogo( 1 + e)T~ -- 

+-~ c~ppdpgo(1 + e) (2~p + (V.Up)7), [130] 

where ~,7 = M~ = (C,  Cj>, e is the restitution coefficient and T = (GC~>/3  is the so-called granular 
temperature. The restitution coefficient represents the loss of energy during collision and varies 
between zero and one. If  it is equal to one, there is no energy loss during collision (elastic collision); 
otherwise, energy is dissipated during collision (inelastic collision). 

In [130], the second order moment of the particulate phase, ~Q, and the granular temperature, 
T, must be modelled. The second order moment is modelled using a Boussinesq approximation 
and the closure model of Jenkins and Richman (1985) to yield 

3/7 = 7"7 - 2v;(~p - ½(V.Up)7), [131] 

where the turbulent viscosity of the particulate phase can be expressed as 

,~ ~ 1 ~ 1 + z ~ P - -  [132] ~ P =  zGpkGP+2 zGpT(I+O~pg°(9~) / 2 Z~p ' 

cf. Simonin (1995) and Peirano and Leckner (1997). The time scale z~p is the interaction time 
between particle motion and gas phase fluctuations. This time scale can be calculated according 
to Csanady (1963) as r~(1 + C~(3U~t/2k6)) -~'2. The time scale of the large eddies, z~, is defined by 
C~(3k~/2~6). The relative velocity U~¢~ is defined by [116] and the constant C/~ depends on the 
direction in the flow, cf. Simonin (1995). The constants ~bc and ac are defined by 2(1 + e)(3e - 1)/5 
and (1 + e ) ( 3 -  e)/5, respectively. The collisional stress tensor, defined by [130], can now be 
rewritten as 

-3ct,tr(%0)I + 2ctpppv~(~ o - ½(V'Uk)7), [133] 

where the collisional viscosity, v~, is defined by 

~p ~pg0(1 + e )  v ; +  p . 

The effective stress tensor can now be written as 

~ R e  _ _  I c~o(?~, + T o ) = --(P~ -- ~pV.U~)7+2/~p(Sp ~(V.U~)7), [135] 

where the fluctuation stress tensor of the particulate phase is ~R~ = --ppYQ, the effective pressure is 

Pp = 7pppT(l + 2~vg0(1 + e)) [136] 

and the bulk viscosity is 

4 
e) / ± .  [137] ¢p = ~ ~?,ppdpgo(1 + "V rc 

The shear viscosity is given as the sum of a turbulent viscosity and collisional viscosity, 
i~p = ct~pp(V~p + v~). Finally, a transport equation for the granular temperature, or for the turbulent 
kinetic energy of the particulate phase, kp = 3T/2,  is required. This is given by 

c ~kp\ 0Up, Dp 0 ~ppp(/~p + Kp) ~x,)  - Z,, 

e 2 -  1 
2Ctpppr~p (2kp - kGp) + ctpp, ~ k,, [138] 
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where Wp and K; are the turbulent and collisional diffusivity coefficients, respectively, and 
~Re c Zij denotes the effective stress tensor, -c%(~p xp + Tp ). The time scale % = (dp/24goctp)x/~/T 

is the particle-particle collision time, i.e. the time between two consecutive binary collisions for 
a given particle. The gas-particle covariance, kGp, is defined as (Ciu~i ) ,  where u~i = uc~ - (uG~)x,P,. 

The turbulent diffusivity is modelled as 

where q~c = 3(1 + e)2(2e - 1)/5 and ~ = (1 + e)(49 - 33e)/100. The collisional diffusivity, Kp, is 
defined by 

47)  w ,140, K; = ~pg0(1 + e) /~P + 5 p " 

To solve [138], a semi-empirical equation for the gas-particle covariance was suggested by Simonin 
(1995) 

UGi 
--~Xppp~/d~/b/pi ~ ~ --  0(pppEGp @ HGp, [141] 

where the dissipation rate, ~Gp, is given by ~Gp -- kGp/~v, and the gas-particle turbulent viscosity 
is V~p = kBp~'Cp/3. The interaction term, HGp, is given by 

H~p = -~PPP ((1 + XGp)kGp -- 2kG -- 2XGpkp), [142] 

where XGp = ~ppp/OtGpG. 
The model of Jenkins and Richman (1985) as well as the generalized model of Simonin (1995) 

are derived for certain restricted conditions. The primary restrictions are granular flows with small 
spatial gradients for the mean fields (velocity and granular temperature), a low level of anisotropy 
and nearly elastic particles (1 - e must be small) in translational motion. In reality, the particle 
flow contains rough, rotating particles, and an accurate collision model should account for these 
effects, cf. Foerster et al. (1994). A formulation of the kinetic theory of granular flow for slightly 
elastic, slightly rough spheres has been given by Lun (1991), but it has not been generalized to 
granular flow taking into account the interstitial gas. Furthermore, there is no general formulation 
of  the transverse forces acting on a single particle in a suspension. The kinetic theory of granular 
flow presented in this section is fairly free from empirical constants. The only constants that appear 
directly in the model are the restitution coefficient, e, and the radial distribution function, go, 
although gas phase turbulence constants affect the model indirectly, through the correlation, kGv, 
between the fluctuating motion of the gas and particle phases. As far as the restitution coefficient 
is concerned, its value affects the results significantly in numerical simulations of dense suspensions, 
Balzer et al. (1995), while the influence is small for dilute suspensions, Bolio et al. (1995). For  dense 
suspensions, a decrease of the restitution coefficient causes the granular temperature to decrease. 
This in turn causes a decrease of the viscosity and diffusion, resulting in larger gradients and more 
bubbles in the calculated results. However, the restitution coefficient has a physical meaning and 
has a constant value for a given material. Measured restitution coefficients for different types of  
materials are given by Foerster et al. (1994). 

The kinetic theory presented in this section takes the interstitial gas into account and is thus a 
generalization of the results of Jenkins and Richman. For a dilute suspension, i.e. where ~,>>~p, 
the particle mean free path is limited by the aerodynamic forces, cf. Boelle et al. (1995). Some 
kinetic theory models omit the aerodynamic forces, cf. section 6.2. A direct consequence of this 
is an overprediction of the particle viscosity in dilute regions. This matter is also discussed by 
Peirano et al. (1997). 
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A detailed derivation of the kinetic theory of granular flow, outlined briefly above, is given by 
Peirano and Leckner (1997). 

5.6. Concluding remarks on turbulence 

As pointed out by Simonin (1995), for dilute suspensions, the models presented above lead to 
an overestimation of the normal particle fluctuation stress components perpendicular to the mean 
flow. For such cases, separate transport equations for the particle second order moment might be 
needed. However, in dense suspensions, e.g. bubbling fluidized beds, where the collisional 
mechanism is dominant, the model presented in this section seems to give satisfactory results. In 
addition, as pointed out by Boelle et al. (1994), their kc-Ec model was originally developed for 
dilute suspensions. In the case of dense suspensions, several studies have shown that the correlations 
related to the fluctuations of the gas phase velocity are nearly negligible. According to Balzer et al. 
(1995), turbulent transport in the gas phase has a relatively great effect on the mean flow field in 
dilute gas-particle flows, for example in the freeboard or inside the gas bubbles of a fluidized bed. 
In the dense regions surrounding the bubbles, however, the inertia of the particles damps out the 
high frequency turbulent scales in the gas phase. This has been discussed by several authors, e.g. 
Rowe (1971) and Kuipiers et al. (1992). The turbulence of the particulate phase in the dense regions 
is generated mainly by particle collisions, whereas the main generation mechanism in the dilute 
regions is interaction with the turbulent eddies of the gas phase. This implies that the application 
of  a two-fluid model to a bubbling fluidized bed may require a model simultaneously taking into 
account the turbulent transport, drag and particle-particle collisions. 

6. APPLICATIONS TO FLUIDIZATION 

A number of  publications on simulation of the hydrodynamics of  bubbling and circulating 
fluidized beds can be found in the literature. Tables 6 and 7, respectively, summarize work on 
bubbling and circulating fluidization simulations. Investigations of pneumatic conveying are not 
considered in this study. 

The tables show details about the model itself, describe some computational aspects, the name 
of the code and validation method, and give some general comments. The model column describes 
the treatment of  the phasic stress tensors, the particle pressure and drag function, and states 
whether the simulation was two or three-dimensional. The computations column summarizes the 
mean particle diameter, particle density, computational mesh size, time step and simulation time. 
In some cases, simulation time was not given in the publications, and the values presented in the 
tables were then inferred from the latest point in time from which results were presented. In the 
comments column, it is stated whether a symmetry assumption is made on the flow field and, for 
the Illinois Institute of Technology/Argonne National Laboratory (IIT/ANL) group, whether 
model A or B is used, cf. section 6.1. The remaining groups use model A. 

The codes used and the specific cases simulated by the different groups vary considerably, which 
makes it difficult to compare the different methods. However, an attempt has been made to outline 
the main features of each groups' work, bearing in mind that there may be other important aspects 
that affect the solution, such as boundary conditions, initial conditions and numerical dissipation. 

6.1. Bubbling fluidized beds 

The material found on bubbling fluidization has essentially been produced by seven different 
research groups over the past 15 years. 

The members of the I IT/ANL group are pioneers in the field and have published the greatest 
amount of articles, using a code which is based on the K-FIX code, originally developed by Rivard 
and Torrey (1977). The earlier publications by the I IT/ANL group are based on inviscid laminar 
models of  both phases using a 2D model. Later work takes into account the turbulence in the 
particulate phase using a kinetic theory model that does not include the aerodynamic forces, and 
3D calculations are also made. The I IT/ANL group introduces two different treatments of the gas 
pressure gradient in the momentum equations. In model A, the pressure gradient is included in 
each of  the phasic momentum equations. This is the model presented in section 4.3.1, and is the 
conventional way of treating the gas pressure gradient. In model B, the whole gas pressure gradient 
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is placed in the gas phase and the expression for the drag function is modified accordingly, cf. 
Bouillard e t  al .  (1989). The I IT/ANL group's motivation for using model B is that it makes the 
set of equations well-posed. However, this has been shown only in the form of a one-dimensional, 
initial-value problem Lyckowski e t  ell. (1978). To our knowledge, nobody has yet proven the 
well-posedness for a multi-dimensional initial-boundary value problem, and consequently most 
researchers today prefer model A. 

In the code by the EG&G W. A. S. C. Inc./Department of Energy Morgantown (EG&G/DOE) 
group, the particle pressure is set to zero in all parts of the bed except for the very dense regions. 
In these regions, the voidage is fixed to a value that corresponds to the maximum particle packing, 
and the particle pressure is calculated to match this value in the particle momentum equation. This 
approach assumes an interpretation of the particle pressure as a repulsive force between the 
particles in the dense regions, similar to that of the modulus of elasticity concept, cf. [63]. The 
authors use their own drag correlation, cf. [92]. 

The Twente University (TU) group adopted a modelling approach similar to that of the 
I IT/ANL group and has contributed to an increased knowledge of heat transfer modelling in 
bubbling fluidized beds. 

The New York University (NYU) group coupled an inviscid hydrodynamic model with different 
tube erosion models. Erosion rates were calculated on tube banks using a Cartesian mesh and 
blocked cells to approximate circular tube geometries. 

The Rheinisch-Westf/ilische Technische Hochschule (RWTH) group developed the F L U E N T  
code in cooperation with F L U E N T  Europe to simulate gas-particle flows and applied the code 
to both bubbling and circulating fluidization. The model is based on the kinetic theory of granular 
flow. The contribution of the group is mainly a comparison of different stress tensor models and 
comparisons between algebraic and differential models for the granular temperature. The group 
has also tested different drag models and has chosen to use the correlation of Syamlal and O'Brien, 
cf. [92] for bubbling fluidized bed simulations. 

The most complete analysis of the two-fluid model and constitutive equations applied to 
gas-particle fluidization has been made by the Electricit6 de France (EDF) group. Their kinetic 
theory model takes into account the influence of the gas phase, which makes the model applicable 
for all particle concentrations. A complete turbulence model for both phases is used, i.e. four 
coupled transport equations are solved, cf. section 5. Some work has been done on 
three-dimensional simulations. 

A number of the above workers assume a symmetrical flow field in the bed and solve only for 
half the bed width in order to save computational time, cf. table 6. An experimental validation 
of such results requires a well-defined experiment in which a single bubble rises through the bed 
without any significant disturbances. In reality, fluidization is a chaotic process with strong bubble 
interaction and a highly asymmetrical flow pattern. Thus, in order to compare results of the 
numerical simulations with the experimental results, statistical averages of the different flow 
parameters must be calculated over quite a significant period of time, without any symmetry 
assumptions being made. This approach has been used by the Chalmers Tekniska H6gskola (CTH) 
group, cf. Enwald e t  al .  (1997), using a time-averaging period of 32 s. Two models have been used 
in this work. The first model is defined by the phasic continuity and momentum equations [46-47], 
with Newtonian phasic stress models [49-51], where the viscosity for each phase is constant. The 
particle-particle interaction force model is expressed with [62-63] and [65], and the drag function 
model suggested by Gibilaro [106], is introduced in the momentum equation as described in 
section 4.4. The second model is also defined by [46-47] with the drag function model of Gibilaro 
[106]. However, the Newtonian phasic stress model [49-51], is used only for the gas phase while, 
for the particulate phase, the kinetic theory of granular flow is introduced. For the particulate 
phase, the stress tensor is given by [135] and the granular temperature is computed with [138] where 
gas phase turbulence is neglected. A time sequence of bubbles rising up through the bed, calculated 
from the two-dimensional form of the constant viscosity model is presented in figure 12. 
Instantaneous gas and particle velocities are shown in figure 13. As shown in the figures, the flow 
is stochastic, with strong bubble interactions including both coalescence and split-up. Experimental 
measurements of visible bubble flow parameters and the through-flow velocity of gas through the 
bubbles were carried out in a freely bubbling pressurized model bed having the same geometry as 
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that used in the numerical simulations. Further details on the comparisons between the 
experimental and numerical results are reported by Enwald and Almstedt (1997). 

Many of the published works have used a constant viscosity for the particulate phase. This means 
that the influence of voidage on the viscosity is not taken into account, One simple way of doing 
this would be to couple a voidage-dependent mixture viscosity model, e.g. one of the models given 
by [58] [61], to the particle viscosity, using a relation of the type suggested in [52]. However, the 
physical justification for [52] is questionable and, to our knowledge, this approach has not been 
tried by any of the groups. In the granular flow theory, the influence of voidage on the particulate 
phase viscosity is taken into account by the use of the effective stress tensor. This is a physically 
more sound approach, although the models contain a number of empirical constants that need to 
be determined experimentally. Thus, the proof  of the pudding is in the eating, and any model used 
should be carefully verified versus experiments. It should also be noted in this connection that the 
majority of the simulations thus far has been made two-dimensionally, something that may affect 
the numerical results to be compared with the three-dimensional reality. 

6.2. Circulating .fluidized beds (CFB) 

There are two major applications of CFB technology: circulating fluidized beds for catalytic 
cracking and circulating fluidized bed combustors. In this section, we have selected papers on 
circulating fluidized bed combustor simulations of real boilers and pilot scale plants. 

The I IT/ANL group initiated two-dimensional computations of circulating fluidized beds using 
constant gas and particle phase viscosities. This was later improved by using kinetic theory of 
granular flow and large eddy techniques (LES) for the gas phase. The kinetic theory as used by 
the IIT/ANL group does not take aerodynamic forces into account, however, and may therefore 
lead to an overprediction of the particle phase viscosity for dilute suspensions, as discussed in 
section 5.5. Furthermore, the use of the LES technique in a 2D model is questionable, as larg e 
scale eddies are always three-dimensional. 

1.0 

0.5 

1.0 

0.5 

0.0 0.0 
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 

Figure 13. Instantaneous voidage distribution, gas velocity field (left) and particle velocity field (right) 
after 4 s. 
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The Telemark Technological R&D Centre/Telemark Institute of Technology (Tel-Tek/HiT-TF) 
group made the first simulation on two-dimensional multi-phase (three particle sizes--four phases) 
fluidization in a CFB. Their model is based on the model by Jenkins and Mancini (1987), which 
is a generalization of the kinetic theory of granular flow presented in section 5.5. The simulations 
seem to predict segregation effects fairly well. The use of LES for the gas phase is questionable 
for the same reason as is given for the IIT/ANL group. 

The research group at RWTH has performed two-dimensional simulations using the kinetic 
theory of granular flow without taking into account the turbulence in the gas phase. A drag 
function model with a cluster correction by O'Brien and Syamlal is used, cf. [92]-[94] and [I01]. 
It is not obvious why the clustering effect should be included in the drag correlation, as this effect 
is already accounted for by the transport equations. 

The EDF group has made three-dimensional simulations of industrial units using the set of 
equations presented in section 5. Their validation of the time-averaged vertical pressure profile over 
a period of 30 s shows that the dense region at the bottom of the combustion chamber is not 
well-predicted. Generally, the model appears to predict the mean flow field fairly well. 

Most of the published work on CFB simulations included here applies the kinetic theory of 
granular flow without taking into account the influence of the gas phase. As discussed above, this 
approximation is rather crude in the dilute parts of the suspension and leads to an erroneous value 
of the particulate phase viscosity. In addition, most groups do not account for the turbulent 
coupling between the phases, i.e. that the particles are dispersed by gas phase turbulence and also 
modulate the gas phase turbulence. This effect is included in the model used by the EDF group, 
cf. the set of equations presented in section 5. The effect of this on the solutions is not clear and, 
again, the different models must be validated versus experiments. 

7. CONCLUSIONS 

This report describes the steps needed to derive a closed two-fluid model applicable to 
non-reacting gas-particle flows. Two types of models are described. The first type, derived by a 
traditional approach, does not include any turbulence models. In the second type, turbulence is 
modelled for both the gas and particulate phases. A full derivation is presented for the model 
obtained with the traditional approach, whereas only a brief overview is given for the turbulent 
two-fluid model. 

The first set of balance equations described in the present report, i.e. the local instantaneous 
equations and corresponding jump conditions, completely describes the dynamics of both phases. 
As mentioned in section 1.5, these equations could in theory be solved either by direct simulation 
or by using a Lagrangian description for the particulate phase. However, with today's computer 
capacity, both approaches would result in completely unrealistic simulation times if the number 
of particles in the system is large. Thus, an averaged, Eulerian, approach is often required, which, 
however, necessitates the inclusion of additional expressions to close the set of equations. 

To close the averaged transport equations, constitutive laws and transfer laws are needed. An 
important area of future work is to improve the constitutive laws, e.g. the shear stress models for 
the respective phases. Transfer laws are needed to model the interfacial relations, of which only 
interfacial momentum is treated in this report. The interfacial momentum transfer was rewritten 
into a generalized drag, M~, which is contributed to by the stationary drag, added mass, transverse, 
history and other forces. For suspensions with a small gas-to-particle density ratio, such as 
gas-fluidized beds, the only one of these forces included in the two-fluid models is normally the 
stationary drag, while the remaining forces are neglected. The correlations given in this report for 
the drag function, K, used when calculating the stationary drag force should be employed with 
caution, as most of them are derived from homogeneous fluidization experiments, i.e. from 
liquid-particle fluidized beds, and not from heterogeneous fluidization. Furthermore, if a stringent 
derivation of an Eulerian turbulent two-phase flow model is made, a drift velocity is introduced 
in the expression for the interfacial drag term, cf. [116] and [117]. This velocity represents the 
dispersion of particles by large-scale turbulent eddies and is likely to be important for cases with 
small particles, although many groups use turbulence models without including the drift velocity. 
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The two-fluid model equations must be solved together with appropriate boundary conditions. 
Problems related to the boundary conditions are, for instance, how to model the particle motion at 
the walls and how to model the air distributor plate, for both phases. The latter problem depends 
on the physical geometry of the distributor plate. Boundary conditions have not been discussed in 
this paper. 

An area that needs improvement is the mathematical theory ofwell-posedness for systems of partial 
differential equations describing gas-particle flows. The well-posedness of such problems has been 
studied by e.g. Lyczkowski et al. (1982) for a one-dimensional inviscid model formulated as an 
initial-value problem, using Lax's theorem (1958). It was found that this inviscid, one-dimensional 
initial-value problem can be well-posed under some conditions, which does not, however, prove the 
well-posedness in several dimensions or when the effects of the boundary conditions are included 
(initial-boundary value problem). With the present level of knowledge, there is no way to determine 
whether the multidimensional two-fluid model is well-posed as an initial-boundary value problem. 

The influence of turbulence appears in the equations in the fluctuation correlations introduced by 
the Reynolds decomposition. For  fluidization applications in which both the density difference 
between the phases and the particle concentration are high, i.e. for bubbling gas-fluidized beds, it 
seems that the inertia of the particles damps out the turbulence in the gas phase. This has been 
discussed by several authors, e.g. Rowe (1971) and Kuipiers et al. (1992a). Thus, in the dense part 
of the bed, ignoring the gas phase turbulence may be a valid approximation, whereas in the dilute 
regions, i.e. in the bubbles and the freeboard, the turbulence may well be of greater importance. 

If turbulence is included, the gas-phase turbulence is normally modelled using a modified k-e 
model. This model includes a number of case-dependent empirical constants. Because of a lack of 
experimental data, these constants are usually taken from the standard one-phase k-~ model. As this 
model can give significant errors even for a number of single phase flows, its validity in two-phase 
flow turbulence is, at least, questionable. 

The simplest way to implement turbulence in the particulate phase is to include a constant, or 
voidage-dependent, particle phase viscosity, using a Newtonian stress strain relation. In the 
literature, the only voidage dependent viscosity models available are for the mixture viscosity. Thus, 
if a voidage-dependent viscosity model is to be used, the mixture viscosity must be related to the 
particle phase viscosity through some physically reasonable assumption. Alternatively, the particle 
phase turbulence can be modelled with the kinetic theory of granular flow, cf. section 5.5, This theory 
is sometimes used without taking into account the effects of the interstitial gas on the particulate 
phase. However, this effect may be important for dilute regions of the flow field. 

A critical discussion of different approaches to the modelling of bubbling and circulating fluidized 
beds is given in section 6. It can be noted that few of the models have as yet been satisfactorily verified 
versus experimental results. Both the simpler and the more advanced models contain a number of 
assumptions, and it remains to be investigated which method is the most reliable for fluidized bed 
applications. 
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APPENDIX A 

Scalar function 

Vector function 

Tensor function 

Gauss' Theorem 

f VfdV = fAfn dA. [All 

fv V.f dV= fAf.n dA. [A2] 

f V'7 dV= ~AT'n dA. [A3] 

Leibniz's Theorem 

d 

APPENDIX B 

Continuity Equation 
Introducing the Reynolds-decomposed velocity vector of phase k into the averaged continuity 

equation [36], results in the following equation 

0 
77 + V' ( (Xkpk(Uk+ = 0. [n l ]  

y ) 

term 1 term 2 

The transient term (term 1) is simplified using the phasic average of the density 

term 1 = ~ (O~kp~k). [B2] 

In term 2, the mass-weighted average of the velocity vector is by definition constant on the scale 
of averaging. Utilizing this fact and the definitions given in section 3.4.2, the term can be rearranged 
in the following way 

term 2 = V'((Xkpk)Uk-~-(XkpkU'k)) 

=0 

Thus, the Reynolds-decomposed and averaged continuity equations becomes 

0 
8t (~kPkXk) + V'(~kpXkUk)=0. [B4] 
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Momentum Equation 
The Reynolds-decomposed velocity vector of phase k is first introduced into the ensemble-averaged 
momentum equation [37] 

(3 
(3-5 (<Xkpk(U~ + U~)>) + V'(<X~pk(Uk+u;)(U, + u~)>) 

k .t I ) 

term 1 term 2 

- v . ( < x ,  L.  > ) -  <X,p~g> = - < T~. v x k  >. [BS] 
L - - Y - -  t k . _ _ _ . y . _ . . _ )  

term 3 term 4 

Starting with term 1, the expression inside the outer brackets is identical to that in the convective 
term of the continuity equation (term 2 in the continuity equation). In a way similar to the 
continuity equation, term 1 can thus be rewritten as 

(3 
term 1 = ~ (akp['Uk). [B6] 

Term 2 is reformulated into the Reynolds-averaged form as follows 

term 2 = V'((Xkp~UkUk > + (2XkpkU~u'k > + (XkpkU'kU~ >) 

=V'(<Xkpk >UkUk + 2 ( Xkpk >Uk <U~ >X*"~ -- ~k ~R~ [B7] 
\ / 

=0  

= v .  (~, p~* u ,  u~ - ~k T~ °). 

Applying the phasic average to the stress and gravity terms, terms 3 and 4, respectively, the 
Reynolds-decomposed and averaged momentum equation is obtained as 

(~ x~ ~(O~kpk Uk) + V'(O:kp~' UkUk)=V'(c~k(~k+ T~¢)) + akp[~g + MkI, [B8] 

where Mkl = - - (  ~k'VX~ > is the interracial momentum transfer term. 


